

Industrial Internship Program

on Additive Manufacturing Technologies

for Engineering Students

Knowledge Partner

The Aeronautical Society of India Bangalore Branch

Course Structure

SI No	Topic Covered	Delivery Method
C01	ASTM Classification and Standards for 3DP technologies Functionalities of Industrial Additive Manufacturing (3DP Technologies) Extrusion Technology (Fused Filament Fabrication); Vat Polymerisation; Binder Jetting and Micro Diffusion Method	The courses are covered through a mixture of – (a) Practical (Handson sessions at AMS
C02	CAD data preparation for Additive Manufacturing, Build methods on part orientation, support generation, model slicing, shrinkage compensation and tool path generation Practical demonstration on aeronautical, automotive and healthcare parts	India Laboratories (b) Tutorials (c) Online Course Sessions (d) Micro Projects (e) Mentored Sessions
C03	Additive Manufacturing Materials – Polymers, Bioinks, Composites and Metals Ashby Diagram and Criterion for choosing right materials and geometries for design Optimisation and light-weight engineering – Examples of Aerial Vehicles and Electric Vehicles	with Domain Experts (f) Industry certification session (ABB Certification and AESI Certification) (g) C01 to CO5 will be covered in online mode. CO6 to CO7 will be covered through in plant
C04	Design for Additive Manufacturing – Process specific, geometry specific and material specific considerations	
C05	3D Printing to 4D Printing – Research and Innovation Trends – Creating Startups and Obtaining financial support from various sources Functional Issues and Skilling needs in Additive Manufacturing – Post processing, surface finishing and recycling	

Co6 - Plant Visit and In-plant Training – 3 days at Mechanical Services India Plant in Bangalore, Working on Systems, DFAM Projects, Part Building, Post processing and Real-world Project

CO7 - In- plant technology demonstration of Additive Manufacturing and Industry 4.0

- Sensors, Machine Learning and Process Monitoring
- CO8 Practical demonstration on prototyping of satellite parts and medical parts

About The Internship:

This course gives basic knowledge of Additive Manufacturing, various technology in Additive Manufacturing, Familiarization of printer components, Familiarization of Material used in Additive Manufacturing, Working on 3D printer with example models.

Smart Objectives:

Acquire knowledge of trending technology in 3D printing.

Recognize the basic components & Material of 3D printer

Understand working of 3D printer

Understand what is slicing, G-code, Various printing parameter

Coaching

Live discussion every day for peer-to-peer doubt resolution

Format

Self-paced recorded sessions with offline visits to AMS India Lab for practical sessions

Mentorship

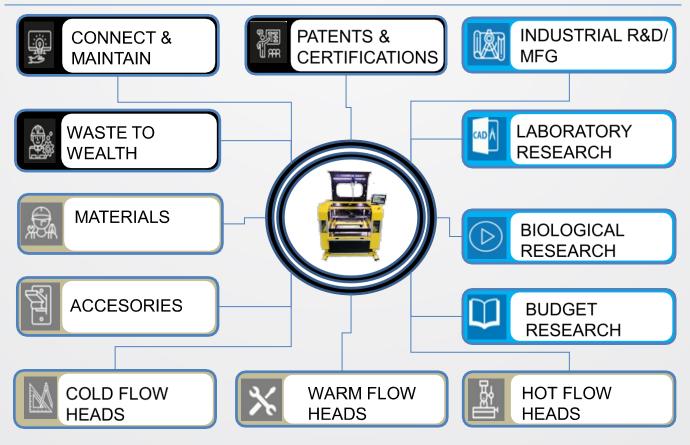
Live interactive sessions with leading faculty covering curriculum

Practical Learning

Hands-on exercises and assessments at regular intervals to test concept understanding and retention

Student Support

Your mentor will help personalise your learning experience by periodically engaging with you to ensure you are on track with upcoming deadlines, offer guidance, resolve non-academic queries and lend a helping hand wherever required. However, in case you need to approach us, you can contact our Student Support Team is available 7 days a week from 09 AM to 06 PM IST



Course Fee Rs 10,000 + GST

Eligibility Students From Any Branch Of Engineering

Hyrel3D Additive Manufacturing Machine

ABB ROBOTIC 3D PRINTING

SOFTWARE TOOLS & CERTIFICATIONS

Software tools and certification of the following are made available to the students undergoing internship


INDUSTRIAL 3D PRINTERS OF ADVANCE MECHANICAL SERVICES PVT LTD

HYDRA-16AS

Designation	Hydra16A Freestanding	
Models	16ASHydra 16ATHydra Standard Tall	
Target Users	Industrial Research	
Placement Mechanism	Freestanding (Floor) Model Gantry Design	
Exterior Dimensions, XxYxZ (closed)	48x35x50 in 48x35x60 in 120x88x125 cm	

SYSTEM-30M

Designation	System 3	ОМ
Target Users	Laboratory Re	esearch
Placement Mechanism	Benchtop Design with	h Knee design
Bed Size	200x200x200mm at 75 Degrees	8x8x8inch at 75 Degrees

ENGINE SR

Designation	Engine SR - (Standar	d Resolution)
Target Users	Laboratory Re	esearch
Motor	0.9 Degree Stepp	ing Motor
Bed Size	100x100x100 mm at 75 Degrees	4x4x4inch at 75 Degrees

Engine HR

Designation	Engine HR - (High	Resolution)
Target Users	Biological Re	search
Bed Size	200x200x200mm at 75 Degrees	8x8x8inch at 75 Degrees

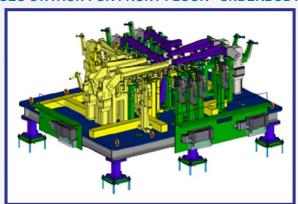
DEVELOPMENTAL & PRINTING ACTIVITIES

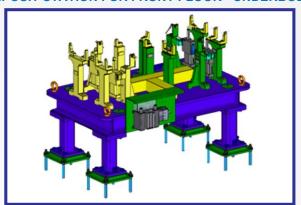
Component Size	400X55X2 mm
Material	Onyx/Nylon + CF
Machine	Markforged

Component Size	150X55X2 mm
Material	PSU / CF+PEEK
Machine	AMS-HYREL

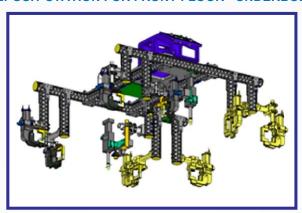
Customer	
Component Size	13x2 mm
Material	Graphene + metal powders
Machine	Ball mill

Component Size	2,4 & 6 mm cells 30x30
Material	PP
Machine	AMS-HYREL


Component Size	210X150X2 mm
Material	Resin
Machine	Form Labs



ASTM	D638
Material	CF+PEEK
Machine	AMS-HYREL


BIW Fixture Design by Advance Mechanical Services Pvt Ltd

GEO STATION FOR FRONT FLOOR - UNDERBODY DEPOSIT STATION FOR FRONT FLOOR - UNDERBODY

DEPOSIT STATION FOR FRONT FLOOR - UNDERBODY

Sachin Gota Dy.General Manager

E-mail: sachin.gota@ams-india.co.in

Mobile No: +91 99011 11899

www.ams-india.co.in www.hyrel3d.in www.simple-iot.net

Advance Mechanical Services Pvt. Ltd., 108 E, First Floor, SRS Road, III Phase, Peenya Industrial Area, Bangalore - 560058

SCAN FOR INFORMATION

